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Low-Reynolds-number, mildly curved, turbulent channel flow has been simulated by 
direct numerical solution of the NavierStokes equations. Computed velocity fields 
were found to be in good agreement with experimental measurements. The resulting 
flow fields were used to study the effects of streamline curvature by comparing the 
concave and convex sides of the channel. Observed effects are consistent with 
experimental measurements for mild curvature. The most significant difference in the 
turbulence statistics is in the Reynolds shear stress. This is accompanied by 
significant differences in the terms of the equation for Reynolds-shear-stress budget. 
In addition, it was found that stationary Taylor-Gortler vortices were present and 
that they had a significant effect on the flow by contributing to the mean Reynolds 
shear stress, enhancing the asymmetry of the channel, and affecting the underlying 
turbulence. 

1. Introduction 
Turbulent flow over curved walls is of considerable engineering interest. However, 

current methods for predicting these flows are quite inadequate, as is evidenced by 
their performance when applied to the relatively simple curvature cases in the 
1980-81 AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows (Kline, 
Cantwell & Lilley 1982). One of the reasons for this difficulty is what Bradshaw (1973) 
calls ‘the surprisingly large effect exerted on shear-flow turbulence by curvature of 
the streamlines in the plane of the mean shear’. He notes that curvature effects are 
often an order of magnitude greater than would be predicted by using dimensional 
arguments. This poor understanding of the effects of curvature greatly hinders 
modelling efforts. 

The effects of curvature on fluid flow have been under experimental and theoretical 
investigation for some time. Early experimental studies of the effect of curvature on 
turbulence (Wilcken 1930; Wattendorf 1935) revealed changes in mean-flow proper- 
ties much larger than had been predicted by mixing-length arguments. Boundary 
layers were observed to grow much faster on concave surfaces than on flat ones and, 
conversely, to grow slower on convex surfaces (Wilcken). Wall shear stresses were 
also greatly affected, increasing on a concave wall and decreasing on a convex wall. 

Sufficiently close to the curved walls, mean-velocity profiles have been observed 
to obey the ‘law of the wall’. This has been the case for both concave and convex 
curved flows in boundary layers (So & Mellor 1973, 1975; and others) and in fully 
developed curved-channel flow (Ellis & Joubert 1974). A t  larger distances from the 
wall, the mean velocity of a convex wall layer exceeds that of the flat-wall profile 

t Also : Department of Mechanical Engineering, Stanford University, Stanford, CA 94305. 
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and the mean-velocity profile of a concave wall layer lies below the flat-wall profile 
when plotted in law-of-the-wall coordinates. The point at  which these deviations 
occur and their magnitudes are dependent on the curvature parameter SIR. For 
sufficiently weak curvature (6/R x 0.01), these deviations occur beyond the log- 
arithmic region (Hunt & Joubert 1979; Hoffmann & Bradshaw 1978). It has been 
suggested (Hoffmann & Bradshaw 1978) that the flat-plate law of the wall applies 
where y I R  is small (y is distance from the wall). 

Turbulence quantities are also affected by curvature. In strongly curved boundary 
layers, the curvature effect on the turbulence intensities is very large. So & Mellor 
(1975) observed intensities and shear stresses of twice the flat-plate values in a 
concave boundary layer with SIR x 0.1. In a strongly curved convex boundary layer, 
So & Mellor (1973) and Gillis & Johnston (1983) observed that the turbulent stresses 
fell to zero in the outer layers. In  the weakly curved boundary-layer cases 
(SIR x 0.01) of Hoffmann & Bradshaw (1978), smaller changes in turbulence 
quantities were observed. Changes in turbulence intensities were 10-20 yo, increasing 
on the concave wall and decreasing on the convex wall. Turbulent shear stress 
increased or decreased about 10% relative to the flat-wall case, with most of the 
change occurring in the outer layer. Even these modest changes are noteworthy since 
an order-of-magnitude analysis of the Reynolds-stress transport equations predicts 
changes an order of magnitude smaller for this mild curvature. In these investigations 
changes in third- and fourth-order statistics of order one were also observed. 

In fully developed curved channels, similar changes in turbulence quantities have 
been observed (Eskinazi & Yeh 1956; Hunt & Joubert 1979). Turbulent intensities 
are larger on the concave side and smaller on the convex side. Also, the point where 
the turbulent shear stress is zero is displaced significantly toward the convex wall, 
and the wall shear stress is larger on the concave side than on the convex side. 

A viscous stability analysis (Gortler 1940) shows that laminar flow over a concave 
surface is unstable at  sufficiently high Reynolds number. This instability leads to a 
system of large longitudinal roll cells. These so-called Taylor-Gortler cells have been 
observed experimentally in laminar flows (Gregory & Walker 1950). Tani (1962) has 
suggested that there is a turbulent analogue to the laminar Taylor-Gortler vortices. 
He was led to this proposal after observing stationary spanwise variations in mean 
velocity in a concavely curved boundary layer. Similar observations have since been 
made by many researchers (Pate1 1968; So & Mellor 1975; Meroney & Bradshaw 
1975; and others). Evidence of turbulent Taylor-Gortler cells has also been found 
in fully developed channels (Hunt & Joubert 1979). These longitudinal vortices give 
rise to spanwise variations in boundary-layer thickness and skin friction. Boundary- 
layer thickness is greatest at the boundaries between the assumed vortices where the 
motion is away from the wall (outflow), and skin friction is lowest there. Turbulence 
quantities in the outer layer are also affected by these large longitudinal structures. 
In general, the effects of concave curvature on turbulence quantities are greater a t  
the outflow boundaries between the postulated roll cells (So & Mellor 1975; 
Hoffmann, Muck & Bradshaw 1985). 

Many researchers have observed a repeatable stationary pattern of spanwise 
variations. This repeatability has been attributed to upstream disturbances (Meroney 
& Bradshaw 1975). In an attempt to impose a more regular pattern of variatiops, 
Hoffmann el al. (1985) placed regularly spaced vortex generators upstream of the 
curved section. The resulting weak longitudinal vortices in the upstream boundary 
layer were amplified by the curvature, serving to ‘lock in’ the positions of the 
turbulent Taylor-Gortler cells. 
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Interestingly, Jeans & Johnston (1982) did not observe a stationary pattern of roll 
cells in their flow-visualization study on concave curvature, presumably because of 
a lack of persistent upstream disturbances. They observed large-scale roll-like 
structures (they referred to them as sweeps and ejections) which appeared randomly 
in time. These structures drifted in the spanwise direction and had streamwise extent 
as small as ‘several boundary-layer thicknesses ’. Barlow & Johnston (1985), using 
the same experimental facility, observed that the appearance of these structures was 
not entirely random, and that their extent and persistence were dependent on 
upstream conditions, for example, the condition of screens in the water channel. 
Barlow & Johnston (1985) also placed vortex generators upstream of the curved 
section and were able to make the roll-call pattern stationary, with rolls extending 
the entire length of the curved section. 

To model the effects of curvature on the mean-flow properties, Bradshaw (1973) 
suggested a correction factor for the apparent mixing length in analogy to the 
Monin-Obouhkov formula for buoyant flows. This model has met with limited success 
in cases of weak curvature. More complicated schemes involving the solution of the 
modelled Reynolds-stress transport equations have also been used (Irwin k Smith 
1975 ; Gibson, Jones k Younis 1981). The Reynolds-stress transport equations have 
additional production, convection and diffusion terms arising from the curvilinear 
coordinate system. These terms do not appear in scalar equations, such as those used 
in models based on the k-e equations. In addition, it has been suggested that 
curvature terms, which arise naturally in the model of Launder, Reece & Rodi (1975) 
for the pressurntrain correlation, may account for observed curvature effects. Thus, 
by solving the Reynolds-stress equations, the presence of curvature is reflected in the 
equations being solved, rather than explicitly added to the turbulence models being 
used. This approach has enjoyed reasonable success. 

Modelling efforts for curved flows have been hindered because the mechanism by 
which curvature induces the dramatic changes noted above is not well understood. 
The study reported here was undertaken in an attempt to improve this understanding 
by using numerical simulation to provide data that are not normally available from 
experiments. Numerical simulation of a turbulent flow can provide the turbulent 
velocity field as a function of space and time, which can be used to compute many 
quantities of interest. For example, all of the terms in the Reynolds-stress transport 
equation can be computed, and the contribution of the Taylol-Gortler vortices to 
quantities of interest can be explicitly computed. 

2. The numerical simulation 
To study the effects of curvature on wall-bounded turbulent flows, a simulation 

of curved-channel flow was performed. The three-dimensional time-dependent 
incompressible NavierStokes equations were solved in the domain bounded by 
sectors of concentric cylinders (see figure 1 for a scale drawing of the domain). An 
imposed mean-pressure gradient in the azimuthal (0) direction drives the flow. 
Periodic boundary conditions are imposed in the streamwise (0) and spanwise (z) 
directions, so that the flow being simulated is the fully evolved turbulent flow in a 
curved channel. This is a relatively difficult flow to realize in the laboratory since the 
flow must be allowed to develop for a long distance in the curved section. However, 
because it is one-dimensional in the mean, it is a particularly attractive flow for 
studying curvature effects and testing turbulence models. 

In  this simulation the NavierStokes equations were solved using a spectral 



482 R. D. Moser and P. Moin 

FIQURE 1. Scale drawing of the computational domain of the curved turbulent channel flow. 

numerical method developed specifically for this problem (Moser, Moin & Leonard 
1983). The method is based on Fourier expansions in the 8- and z-directions and 
Chebychev polynomial expansions in the direction normal to the walls ( r ) .  The 
method, and the code implementing it, were tested and verified by simulating 
transitions in Taylor-Couette flow ; excellent agreement with theoretical, experi- 
mental and other numerical results was obtained (Moser & Moin 1984). Note that the 
Navier-Stokes equations were solved directly. This is in contrast to large-eddy 
simulations (e.g. Moin & Kim 1982), where small-scale stresses are modelled. 

The curvature parameter 3/rc, where 3 is the channel half-width and rc is the radius 
of curvature measured at the centreline, was chosen to be 1/79 = 0.0127, and the 
Reynolds number was 2990 based on centreline mean velocity and 3. This is within 
the range described by Bradshaw (1973) as mild curvature (3/R z 0.01); Bradshaw 
suggested that studies on curvature effects should concentrate on mild curvature 
because in problems of aerodynamic interest streamline curvature is most often mild. 
The Reynolds number was chosen to be close to those studied by Eckelmann (1974) 
and Wallace, Eckelmann & Brodkey (1972). The computational domain (a scale 
drawing appears in figure 1) has a length of $c3 in the spanwise ( z )  direction and 
subtends an angle of 0.16 rad in the streamwise (8) direction, which yields a length 
of 12.643 along the centreline. These dimensions of the computational domain in the 
8- and z-directions were chosen to ensure that the artificial (periodic) boundary 
conditions used in the 8- and z-directions do not adversely affect the computed 
solutions. It is necessary that the computational domain be long enough so that the 
computed two-point correlation functions in the 8- and z-directions fall substantially 
to zero in half the domain length (see Moser & Moin 1984). 

Unless otherwise stated, results presented throughout this paper will be non- 
dimensionalized with the shear velocity and channel half-width. However, because 
a curved channel is not symmetric with respect to the channel centreline, the 
definition of the shear velocity is not unique. Three different definitions will be used. 
The first two are based on the wall shear stress at each of the two walls, that is, 
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These will collectively be called 'local U,'. The third definition is global; it is obtained 
by analogy with the plane channel. In  the plane channel, the mean pressure gradient 
dP/dz is - 1 when normalized by p q / S ;  in the curved channel, the mean pressure 
gradient is (l/r) dF/dO so the global U, is defined as 

The global value U,, will be referred to simply as U,. All shear velocities were 
calculated by averaging in the z- and &directions as well as in time. The superscript 
+ will be used to indicate normalization by local U, and u (wall coordinates). The 
Reynolds number based on U, and S is 168 for the results presented here. This 
corresponds to a Reynolds number of 2990 based on the centreline mean velocity. 
Reynolds numbers based on U,, and U,, (Rei and Re,) are 155 and 180 respectively. 

In these computations, 128 Fourier modes are used to represent the velocity field 
in the z- and &directions. Chebyshev polynomials up to order 64 are used in the 
r-direction. In wall units, the effective grid spacing in the z-direction is 
Az+ = AzU,/u = 6, and in the &direction i t  is r:A8 = 18. In the r-direction, the 
closest effective grid point to the wall is at y+ = 0.2, and towards the centre of the 
channel the maximum spacing is Ay+ = 8.2. These grid spacings are representative 
of the resolution of the Fourier/Chebyshev velocity representation. The collocation 
grid used to compute the nonlinear terms has 1.5 times finer resolution in each 
direction to remove aliasing emow. 

To evaluate the adequacy of the spatial resolution, one-dimensional energy and 
dissipation spectra were computed (Moser & Moin 1984). The energy spectra have 
at least a 100: 1 reduction of the high wavenumber energy density compared with 
the low wavenumbers. In  addition none of the energy spectra show a significant 
upturning a t  the highest wavenumbers, which would be indicative of poor resolution. 
Dissipation spectra have at least a 10: 1 reduction at high wavenumbers compared 
with low wavenumbers. However, the spanwise dissipation spectra show some 
upturn at  the high wavenumbers. The amount of dissipation in these upturned tails, 
which is a measure of the dissipation of the unresolved small scales, is generally less 
than 10 yo of the total dissipation. Thus most of the dissipation resides in resolved 
scales. These observations are evidence of the general adequacy of the computational 
resolution. Note that the Kolmogorov lengthscale 7, which, based on average 
dissipation is about two wall units, is not resolved. However, most of the dissipation 
takes place at scales larger than 157. 

Further evidence of the adequacy of the computational resolution is the qualitative 
and quantitative similarity of the computed results with the experimentally observed 
characteristics of curved wall-bounded turbulent flows and wall-bounded turbulent 
flows in general. For example, the near-wall spanwise two-point correlation of u 
shown in figure 2(a )  has a distinct negative minimum at Az+ x 50. This is clear 
evidence of alternating high- and low-speed regions near the wall, with mean spanwise 
spacing A+ = 100. Streamwise two-point correlation functions (Moser & Moin 1984) 
show that these regions are elongated in the streamwise direction. Detailed exami- 
nation of instantaneous velocity fields also reveals elongated near-wall streaks with 
this average spacing (Moser & Moin 1984), in agreement with experimental 
observations (Kline et al. 1967). Other similarities with experimental observations 
will be noted throughout the following sections. 
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FIGURE 2. Spanwise two-point correlation functions near the concave wall: -, Re@; ----, 
R,,; --- , R,,, (a) y+ = 6.13; ( b )  34; (c) 117. Repeated indices are not summed. 

I n  computing the convective terms, aliasing errors were removed since for 
time-dependent problems aliasing may be particularly damaging (Moser et al. 1983). 
A time-step of 0.0005&/ U, was used in these computations, which yielded a maximum 
Courant number of 0.8, where the Courant number C is defined as 

The initial condition for these computations was obtained from a low-Reynolds- 
number, large-eddy simulation of Moin & Kim (1982). The velocity field fr0.m their 
calculation was simply interpolated to the collocation grid for the current calculation. 
It was then allowed to  evolve for about 126/U,, a t  which time the flow reached 
statistical equilibrium. The calculations were then continued in order to obtain an 
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FIQURE 3. Mean velocity profile in local wall coordinates: -, concave wall; ----, convex 
wall; 0, plane-channel data of Wallace, Eckelmann t Brodkey (1972); . . . . . . . ., U+ = 2.5 
logy' + 5.5. 

adequate statistical sample. Statistics reported here were averaged over a time of 
about 66/U,, which corresponds to 1078/U,,, where U,, is the centreline mean 
velocity. The statistics were obtained by averaging in the streamwise direction in 
time, and often in the spanwise direction. Space-time correlation functions of the 
velocity field (Moser & Moin 1984) indicate that the largest eddies are coherent for 
a time of about 0.56/UT. Thus, the temporal averaging over 66/U, provides an 
approximately 12 times better sample of the largest eddies than a single velocity field. 
Also, the two-point spatial correlations (Moser & Moin 1984) indicate that the largest 
eddies are coherent in the streamwise and spanwise directions over about t the 
computational domain in those directions. The statistics reported here therefore 
represent approximately 300 independent samples of the largest eddies. This stat- 
istical sample is considered marginal for some quantities (e.g. two-point correlations, 
spectra and high-order moments). 

The computations reported here were performed on a CRAY-XMP 2/2, with a 16 
megaword SSD. Computations required 22 seconds per time-step. The code for this 
simulation was written in VECTORAL (Wray 1983). 

In the sections to follow, we shall be concerned with several types of averaging and 
several different velocities. To facilitate discussion, the following notation will be 
used. The velocity vector is denoted u, with components vr, vug and vz. Two averages 
are defined: ii is the average in 9, z and t while (z is the average in just 8 and t. Several 
averages of the velocity are defined as U, = <, u, = vt- U,, and u; = v,-C6. To 
facilitate comparison with the plane channel, u, v and w will be used interchangeably 
with uo, u, and uz; for example U = Uug and v' = ui. All velocities are normalized by 
global U, unless otherwise indicated. When quantities are plotted in local wall 
coordinates, they will be normalized such that positive normal velocity is directed 
away from the wall. 

3. Mean statistics 
The mean velocity has been plotted in law-of-the-wall coordinates in figure 3.. Both 

U+ and y+ are based on the local U,. Also plotted are the plane-channel data of 
Wallace et al. (1972) at Reynolds number Re, = 187. Throughout this section, 
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FIGURE 4. Turbulence intensities: -, 2'; ---- > ,  zP. ---, 3'. ( a )  Contribution of Taylor 
vortices included. ( b )  Contribution of Taylor vortices excluded. 

-1 

comparisons will be made with experimental data obtained in plane channels because 
detailed measurements of low-Reynolds-number curved channels are not available. 
The mean velocities on both sides of the channel and the data of Wallace et al. are 
in excellent agreement for yf less than 20. For yf greater than 20, the mean velocity 
of the unstable (concave) side lies below the other two. This is the experimentally 
observed effect of curvature. The difference between the concave- and convex-wall 
mean-velocity profiles is larger than can be accounted for by the small difference in 
local Reynolds number between the two sides. As expected the plane-channel data 
fall between the concave and convex profiles. Note, however, that the mean-velocity 
profile of Eckelmann (1974) obtained in the same facility at Re, = 146 coincides with 
the convex-wall profile, which is contrary to the expected curvature effects. I n  the 
experiments of Hunt & Joubert (1979), with approximately the same curvature and 
a 10 times larger Reynolds number than in these computations, the mean-velocity 
profiles of the concave and convex sides did not diverge until y+ z 200. In both 
the experiments and the computations, however, the point of divergence is a t  
approximately the same y/r location of 0.0015 (here y is distance from the wall). This 
is in accordance with the conjecture of Hoffmann & Bradshaw (1978) that  the location 
y where curvature effects on the mean velocity become significant should scale with 
r rather than with any shear-layer lengthscale. 

Turbulent intensities as a function of radial position are shown in figure 4(a). As 
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side; 0, plane-channel data from Kreplin & Eckelmann (1979~).  ( a )  uaP; (bj  $7;;) tozr. 
FIGURE 5. Turbulence intensities in local wall coordinates: -, concave- ide. - c 3 v e x  

expected, turbulence intensities near the concave wall are higher than those near the 
convex wall. As can be seen in figure 4(b) ,  this difference persists even when the 
contribution of the Taylor-Gortler vortices $ is not included (see $4). In  figure 5 
the intensities (gi) are plotted in local wall coordinates for both sides of the channel. 
Also plotted are the plane-channel data of Kreplin & Eckelmann (1979~)  at Reynolds 
number Re, = 195. The streamwise intensities (2;) for both curved walls and the 
plane channel collapse when normalized in this way. The spanwise ($i) and normal 
(3;) intensities on both curved walls collapse fairly well when normalized by local 
U,. However their agreement with the data of Kreplin & Eckelmann is not as good 
as that of 2:. In  particular, the computed v-intensities are considerably below the 
experimental plane-channel data. Recent results of direct simulation of plane-channel 
flow at the same Reynolds number have a similar disagreement with the data of 
Kreplin & Eckelmann. 
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FIQURE 6. Reynolds stresses. (a) Global coordinates: -, (-TE); ----, ( - B v ' ) ;  --- , viscous 
plus turbulent stress; . . . . . . . ., equilibrium stress. ( b )  in local wall coordinates: -, concave 
side; ----, convex side. (c) iii? in local wall coordinates: -, concave side; ----, convex side; 
0,  plane-channel data from Eckelmann (1974). 
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FIGURE 7. Correlation coefficient R, with and without the contribution of the Taylor-Gortler 
vortices. - (~/(Gi?)i) ,  ---- (iiV/(iPiP)+). 

The turbulent shear stress (-uV) is presented in figure 6(a) with the contribution 
of the Taylodort ler  vortices to the turbulent stress ( -=) and the total shear stress 
(viscous and turbulent). The differences between the concave and convex sides are 
striking. In  particular, away from the wall the Taylodort ler  vortices make a 
significant contribution to the concave-side Reynolds stress, but they contribute 
negligibly to the convex side. In  figure 6(b), where -m normalized by local U, is 
plotted, it is clear that the curvature has enhanced the Reynolds stress on the concave 
side relative to the convex side (note that there has been a sign change on the concave 
side to allow direct comparison of the two sides). Figure 6 (c), in which -uV in local 
wall coordinates and the data of Eckelmann (1974) are plotted, shows that, except 
in the immediate vicinity of the wall, Eckelmann’s plane-channel data at Re, = 146 
lie between the concave and convex wall Reynolds stresses. The correlation coefficient 
uw/(uzwz))t shown in figure 7 indicates that streamwise and normal fluctuations are 
better correlated on the concave side than on the convex side (coefficients of 0.5 as 
opposed to 0.4). Away from the wall, this is in part a result of the Taylor-Gortler 
vortices, as is seen in the correlation coefficient with the contribution of the vortices 
removed (U$I/(PP)t). 

Profiles of r.m.s. vorticity fluctuations excluding the contribution of the Taylor- 
Gortler vortices (ZI) normalized by U,/d are shown in figure 8(a). Because of the 
large spatial scale of the Taylol-Gortler vortices their contribution to the r.m.8. 
vorticity fluctuations is negligible (less than 4 %). As was observed by Moin & Kim 
(1982), the spanwise vorticity profile attains its maximum a t  the wall, and falls off 
monotonically away from the wall, and the streamwise vorticity profile attains its 
maximum at the wall and has a local maximum at y+ x 20. Note that the dissipation 
exhibits a similar local minimum near the wall (see $5) ,  though no direct relationship 
between vorticity and dissipation is expected in this highly inhomogeneous flow. 
Away from the walls, the three components of the r.m.8. vorticity fluctuations are 
virtually identical, in contrast to the velocity fluctuations, which are significantly 
different. In figure 8 ( b )  the r.m.8. streamwise vorticity fluctuations, non- 
dimensionalized by local e / v  for each wall, are shown, as well as the plane-channel 
data of Kastrinakis & Eckelmann (1983), at Re, = 580. The profiles from both walls 
are in very good agreement when non-dimensionalized in this way, and they are in 
good agreement with the plane-channel data for y+ greater than 20. However, the 

_ _  - 
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FIGUR 8. The r.m.8. vorticity fluctuations. (a )  Global coordinates: -, w?*; ----, wit ' ;  ---, wL2'. 

of Kastrinakis t Eckelmann (1983). 
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( b )  -f w p  in local wall coordinates: -, concave wall; ----, convex wall; 0, plane-channel data 

experimental plane-channel profile does not obtain a minimum near the wall, and the 
computational and experimental limiting wall values are in disagreement. Other 
researchers have experimentally observed a range of limiting wall values of Q from 
0.065 to 0.12 (see Kreplin & Eckelmann 1979a) and Moin & Kim (1982) found a value 
of 0.13 in their computations; 0.19 was calculated here. The limiting wall value of 
the spanwise vorticity fluctuations (0.36) in the present calculations is also higher 
than observed experimentally (0.2 to 0.3, Kreplin & Eckelmann 1979a) and the 
computed value (0.2) of Moin & Kim (1982). The reason for this discrepancy is not 
known, but it is not a curvature effect since a recent direct simulation of plane- 
channel flow shows the same discrepancy. The plane-channel calculations of Moin & 
Kim (1982) and the present calculations, which use unrelated numerical methods, 
both show local minima in r.m.s. streamwise vorticity fluctuations near the wall. The 
streamwise vorticity profiles of this computation and that of Moin & Kim (1982) are 
consistent with the model of near-wall turbulence containing streamwise vortices. A 
maximum in r.m.s. vorticity away from the wall would result from the vorticity in 
the core of the vortices; the maximum at the wall would result from the local 
(spanwise) shear layer induced by the vortices as a consequence of the no-slip 
boundary condition on w, and the sharp minimum would occur because the 
streamwise vorticity in the local shear layer would be of opposite sign to that in the 
vortex. 
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In figure 9 the skewness factors of u, v and w (S(u) = u8/u2*) are shown with and 

without the contribution of the Taylor-Gortler vortices; (S(u) and S(u’)). Away from 
the walls, the Taylor-Gortler vortices have an appreciable effect on the skewness 
factors. The same is true of the flatness factors. Because of the reflection symmetry 
of the Navier-Stokes equations, the skewness of w should be zero. The very small 
values of w-skewness shown in figure 9 indicate that the statistical sample from which 
the skewness is calculated is adequate. In figure 10, skewness factors from both sides 
of the channel are plotted in local y+ coordinates, together with the data of Kreplin 
& Eckelmann (1979a) for the plane channel. Note that the u‘ skewness factors are 
in very good agreement with the plane-channel data. The agreement for the v’ 
skewness is not nearly as good. The v’ skewness of Kreplin & Eckelmann never 
becomes negative and has a much larger value at the wall. Also, recent S(v)  
measurements by Alfredson & Johansson (1984), which were limited to y+ > 30, show 
no tendency to become negative near the wall. However, negative v-skewness factors 
in the vicinity of the wall were also observed in the computations of Moin & Kim 
(1982) and the experiments of Barlow & Johnston (1985). 

It is interesting that the u’ skewness at the wall is approximately 60 yo higher on 
the convex side than on the concave side, indicating that the large u-fluctuations 
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FIGURE 10. Skewness factors in local wall coordinates: -, concave wall; ----, convex wall; 
0,  plane-channel data of Kreplin & Eckelmann (1979a). (a )  S(u’), ( b )  S(v’). 

associated with high-speed fluid arriving from away from the wall are stronger on 
the convex side. This may be attributed to  the effect of the Taylor-Gortler vortices 
on the underlying turbulence. On the concave side there is a region of strong flow 
away from the wall (see $4), which would tend to  inhibit the motion of high-speed 
fluid towards the wall. 

Velocity flatness factors of u’, v‘, and w‘ (F(u‘) = PIG2) are shown in figure 11. 
The flatness of all three velocity components are between 3 and 4 away from the walls 
(a Gaussian distribution has a flatness of 3). Near the wall, the flatness factors 
generally become large, which is indicative of intermittency or spottineas of turbu- 
lence there. The u’ flatness factors for both curved walls are in good agreement with 
the plane-channel data of Kreplin & Eckelmann (1979~)  (figure 12). The w‘ and 
particularly the v‘ flatness factors do not agree as well with the experiments. The 
computations of Moin & Kim (1982) show similar disagreement of v’ flatness with 
the data of Kreplin & Eckelmann. Near the walls, the flatness of v’ and w’ are 
extremely large (30.83 for v’ and 9.62 for w‘ a t  the convex wall, 27.09 and 7.57 
respectively a t  the concave wall). Also, the flatness factors of all three velocity 
components are higher in the near-wall region (y+ < 10) of the convex wall than near 
the concave wall, which suggests that  the turbulence is more intermittent very near 
the convex wall. 

I n  the results discussed above, it is clear that many of the curvature-induced 
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FIGURE 12. Flatness factors in local wall coordinates: -, concave wall; ----, convex wall; 
0,  plane-channel data of Kreplin & Eckelmann (1979~). (a) F(u’), ( b )  F(v’), (c) F(w‘). 
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Taylor- Underlying 
Irreducible Gortler turbulence Total 

Concave wall 0.2803 0.1789 0.6899 1.1490 
Convex wall 0.2851 0.0482 0.5416 0.8748 

TABLE 1 .  Contributions to wall shear stress 

differences in the turbulence statistics can be removed by scaling with the local U, 
(e.g. intensities, r.m.s. vorticity). In  addition, in $5 we will see that many of the terms 
in the Reynolds-stress-balance equations for the concave and convex sides also 
collapse when scaled by local U,. It is therefore interesting to determine what induces 
the differences in wall shear stress between the convex and concave wall. By solving 
the mean-momentum equation, expressions can be developed for the wall shear 
stresses in terms of the mass flux and the turbulent shear stress: 

where 

(3.4) 

where m is the mass flux. Since the dependence on the turbulent shear stress UV is 
linear, the wall shear stress can be decomposed into a portion due to viscous stress 
(the shear stress due to a laminar flow at the same mass flux), a portion due to the 
Taylor-Gortler vortices, and a portion due to  the underlying turbulence. The results 
of such a decomposition are shown in table 1. Note that approximately half of the 
difference in wall shear stress between the concave and convex walls is due to the 
Taylor-Gortler vortices. Thus the Taylor-Gortler vortices are very important in the 
establishment of the asymmetry between the concave and convex walls in the curved 
channel. 

4. Taylor-Giirtler vortices 
In  laboratory experiments, Taylor-Gortler vortices can be made stationary by 

introducing weak disturbances into the boundary layer upstream of the curved 
section (see $ 1). These controlled disturbances have the effect of triggering the Gortler 
instability, causing the vortices to grow in preferred locations. In  the present 
computation the analogous upstream disturbances are the Taylor-Gortler vortices 
themselves as they are convected out of the downstream end of the computational 
domain and are re-introduced at the upstream boundary by the periodic boundary 
contli tions. A similar phenomenon occurs in high-Reynolds-number Taylor-Couette 
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flow; although the flow is fully turbulent, there are stationary, axisymmetric Taylor 
vortices present (Coles 1965) because of the periodicity in the azimuthal direction. 
Note that nothing precludes the vortices from moving in the spanwise direction; the 
spanwise periodicity does not force them to remain stationary. However, the periodic 
boundary conditions in the spanwise direction do have the effect of restricting the 
possible wavelengths of the Taylor-Gortler vortices. As discussed in $2, the domain 
width ($d) was chosen to minimize the effect of the periodic boundary conditions 
on the turbulence. The Taylor-Gortler wavelength resulting from this choice is 
somewhat larger than the wavelength in the experiments of Johnston, Halleen & 
Lezius (1972) in a rotating channel (there is an analogy between a rotating channel 
and a curved channel, Bradshaw 1973). Since natural vortices which are free to form 
with the preferred wavelength should have maximum strength, the Taylor-Gortler 
vortices computed here will underestimate the strength and effects of unrestricted 
vortices. The results in this section concerning the effects of presumably stationary 
Taylor-Gortler vortices are expected to  be valid for non-stationary vortices, as long 
as they are coherent over distances and times much larger than the length- and 
timescales of the underlying turbulence. Also note that these calculations are 
fundamentally different from the experiments in which disturbances are introduced 
to  lock in the vortices, because here no artijcial disturbances were introduced. The 
computations were started with a turbulent velocity field taken from the computa- 
tions of Moin & Kim (1982) which was allowed to  evolve in the curved channel. The 
Taylor-Gortler vortices in this computation developed from turbulent fluctuations 
with a broad spectrum. 

In order to study turbulent Taylor-Gortler vortices they must be differentiated 
from the underlying turbulence. For this study the vortices are determined to be the 
average of the velocity field in 8 and t minus the average in 0, z and t ,  i.e. (5-B).  
Note that since the temporal average is over a finite time, the vortices that survive 
this averaging may actually be moving or evolving on a timescale of the averaging 
time (6S/U,) or longer. Therefore, with the current method i t  is not possible to  
determine whether the vortices are drifting or not. If slowly drifting TaylorGortler 
vortices were present, the results of the averaging performed here would underestimate 
their strength and effects. 

The Taylor-Gortler vortices were isolated by determining the average velocity v' 
as a function of r and z. I n  figure 13 the secondary-flow streamlines of the vortices 
are plotted. The streamlines before and after averaging over the mirror-image flow 
are shown. The mirror image flow 6 is defined by 8o(z)  = Vo( - z ) ,  8,(z) = v,( - z ) ,  
8Jz) = -v2( - z ) ,  where z = 0 is taken as the point between the two vortices. 
Averaging over the mirror-image flow was done because the Navier-Stokes equations 
are invariant to this reflection, so that the mirror-image velocity field is an  equally 
valid solution. This procedure effectively doubles the statistical sample. Note that 
the effect of this averaging is to make the contour lines somewhat smoother, and to 
remove a minor asymmetry of the vortices. Averaging over the mirror-image' flow 
was performed for all the remaining results in this section, which had the effect of 
removing similar asymmetries from the results. In  this and all subsequent contour 
plots, negative quantities are denoted by dashed lines. The streamlines show that the 
vortices fill the entire channel, though they are concentrated somewhat on the 
concave side. Between the two vortices, where the streamlines are closely packed, 
is a region of relatively strong flow away from the concave wall. Flow towards the 
concave wall due to the Taylor-Gortler vortices is significantly more diffuse than the 
flow away from the concave wall. 
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(4 Concave wall 

(b) Concave wall 

Convex wall Li' ' " ' I " " " " ' ' ' " " ' " " ' " 

FIGURE 13. Secondary-flow streamlines of the Taylor-Gortler vortices. The top of the figure is the 
concave wall. (a) Not averaged over mirror image; (b)  averaged over mirror image (see text). In 
this and subsequent contour plots, dashed contours are negative. 

FIGURE 14. Variation of the wall shear stress in the spanwise direction: -, concave wall; 
-___ , convex wall ; . . . . . . . . , averaged values. 

I n  figure 14 the spanwise variation of the wall shear stress is shown for both walls 
( ( l /Re )a (U+~) /ar ( r , r , , ro ) .  On the concave wall there is a very sharp minimum in 
sheer stress located between the vortices. The oscillatory behaviour of the shear-stress 
curves on both walls is attributed to a poor statistical sample. On the convex side 
the effect of the vortices is so small that it  is masked by the statistical noise. 
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Contours of the averaged velocities associated with the Taylor-Gortler vortices (iiJ 
are shown in figure 15. The intense region of negative r-velocity is evident in the area 
between the vortices. Note that the largest radial velocity is O.85UT or about 5 % of 
the centreline mean velocity. This strong radial flow convects low-speed fluid away 
from the concave wall, giving rise to an area of strongly negative ii,., that has a 
magnitude as large as 2.8U7 (about 15% of the centreline velocity). It is clear that 
the region of strong negative v" is responsible for most of the Reynolds shear stress 
contributed by the Taylor-Gortler vortices, as can be seen in figure 16 where the 
contours of iiv" are plotted. In  the middle of the region of strong radial flow, the local 
Taylor-Gortler Reynolds shear stress is as high as 1 . 5 q  (recall that the maximum 
contribution of the vortices to total Reynolds shear stress is about 0 . 2 q ) .  Also of 
interest is the significant gradient of the streamwise and spanwise Taylor4ortler 
velocities (a.ii/ar and ad/&) near the concave wall, as indicated by the concentration 
of contour lines in figures 15(a, c). The gradient of the streamwise Taylor-Gortler 
velocity, which is opposite in sign to the gradient of the mean velocity, is responsible 
for the large defect in shear stress on the concave side (figure 14). 

The Taylodort ler  vortices affect the underlying turbulence by convecting it 
along the streamlines in figure 13, and by introducing a secondary strain field which 
contributes to its production. In  figure 17 the contribution of the underlying 
turbulence to the components of the Reynolds-stress tensor are shown as a function 
of r and z. Plotted are contours of u; ui-w; the mean value is subtracted to make 
the variations more apparent. In the plots of the diagonal elements of the Reynolds- 
sjress tensor due to underlying turbulence (figure 17a-c for u ~ - u &  u,"-u;2, and 
uL2-+ respectively) there is a strong positive region slightly away from the concave 
wall centred on the region of strong negative ii, (labelled A in the figures). This is the 
result of convection by the Taylor-Gortler vortices and variations in production. 
Turbulence near the wall, where the intensities are maximum (see figure 4b), is 
convected towards the centre of the channel by the strong ii,. Also, in this region 
the magnitudes of a( U+d) /ar  and u u, are larger than the mean (see figure 15a and 

figure 18), so that production of u; is enhanced in this region. The positive region 
of %-$ is the strongest of the three, since the maximum in intensity near the wall 
is most pronounced for the &intensity, and because of the enhanced production of 
Y Y -  u2. Likewise, u,"-u;z has the weakest such positive region, because the maximum 
in r-intensity is least pronounced. Toward the sides of the plot domain, where ii, 
is weak but positive, the opposite mechanism (fluid with a low turbulence level 
convected towards the concave wall by the Taylor-Gortler vortices) produces the 
regions of negative 3-q in the region labelled B. It could also be argued that a 
similar convection mechanism should be at  work near the convex wall ; however, the 
effect is much weaker and cannot be reliably differentiated from statistical noise. 

Near the concave wall (y+ < 20) there is a region of very intense negative q-q 
under the positive regions discussed in the previous paragraph (labelled C). This is 
the result of depressed production in this region. Here, the magnitudes of a( U +  ii)/ar 

and ueu, are smaller than the average (figures 15a and 18) so that production of ui2 
is suppressed. There is a similar, though considerably weaker, negative peak in 
Y -  7 -  
U ~ - U ~ ~  in region C, which may be a result of the depression in uz-up through 
interaction via the pressure-strain term. Also, near the concave wall, at either of the 
outer boundaries of the plotted domain, all intensities have a relatively strong 
positive region (especially 2 -$). The reason for these positive regions is not known. 

7 -  Y -  

7, 

4 

w, 
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Concave wall 
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FIGURE 15. Velocities of the Taylor-Gortler vortices in the (r,z)-plane. Contours of (a) C8, ( b )  
ii,, (c) 4,. Contour levels incremented by k0.15, starting at f0.075. Dashed contours are 
negative. 
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Concave wall 

FIQURE 16. Contours of CT? in the ( r ,  %)-plane. Contour levels incremented by kO.1, starting at 
k0.05. 

r v -  
The Rcynolds-shear-stress term uiu:-u;u; (figure 18) is similar to 3-$ in that 

it is positive in region A and negative in regions B and C. Convection is responsible 

for the behaviour in regions A and B. In  region C, the production of uo vr is suppressed, 
contributing to the negative values there. 

?, 

5. Reynolds-stress budget 
The Reynolds-stress equations in cylindrical coordinates are derived in Moser & 

Moin (1984) and elsewhere. Here we consider the Reynolds-stress equations for the 
special case in which the mean velocity U, varies only in the radial direction. For 
this special case, the equations are 



1 
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P Concave wall 

Convex wall 

FIGURE 18. Contours of the Reynolds shear stress due to the underlying turbulence in the ( r ,  2)-plane. 
Contour levels are incremented by +0.05, starting at f0.025. The innermost negative contour in 
region C is -0.18q. 

The equation for the turbulent kinetic energy = +(2+7+2) is 

where E is the dissipation of turbulent kinetic energy. In  these equations the terms 
on the right-hand sides are labelled (in order of appearance) production, convection, 
turbulent diffusion, velocity-pressure gradient (VPG), viscous diffusion and dissipa- 
tion. Zeros appearing in the equations indicate terms that are identically zero. Many 
of the terms in the Reynolds-stress equations in cylindrical coordinates do not appear 
in the corresponding equations in Cartesian coordinates ; they are the so-called ‘extra ’ 
terms (Bradshaw 1973). These terms reflect the fact that in cylindrical coordinates 
the orientation of the coordinate axes is a function of 8. Even though the flow is 
homogeneous in the &direction, the orientations of the mean velocity vector and the 
principal axes of the Reynolds-stress tensor are functions of 8. This gives rise to 
streamwise (0) gradients of mean velocity and Reynolds stress. 

The streamwise gradients contribute to production, convection and diffusion of the 
Reynolds stresses. For example, in the 2 equation the production term consists of 
two parts: -2?Zr(aU/r)/ar which represents the production of 2 by interaction of 
turbulence with the mean shear; and - 2 E (  Ulr )  which is the production caused by 
the interaction of turbulence with the streamwise gradient of the mean-velocity 
vector. Similar streamwise production terms appear in the balance of 3 and G. The 
convection terms in each of the equations represent the convection of the Reynolds 
stresses by the mean velocity; this is not zero because of the streamwise gradients 
of the orientation of the Reynolds-stress tensor. The diffusion terms consist of 
diffusion in the radial direction ( ( l l r )  a r . .  .I&) and diffusion in the streamwise 
direction, which acts to diminish the gradient of the stress tensor in the streamwise 
direction. 

In the 2 equation, all the streamwise gradient terms are the same as in the 3 
equation but with opposite sign, and there are no streamwise gradient terms in the 
3 equation. Thus, these terms do not contribute to the equation for the kinetic 
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FIQURE 19. Terms in the balance of u2 in local wall coordinates (terms normalized by local Uj/v) : 
(a) concave wall, (b) convex wall. -, production ; --, streamwise production and convection 
(they are equal) ; -.-, radial turbulent diffusion; . . . . . . . ., velocity-pressure gradient; ---, 
dissipation ; ----, radial viscous diffusion. 

-4 

energy ?. The reason is that  there is no streamwise gradient of since it is an 
invariant of the Reynolds-stress tensor. 

In  figures 19, 20, 21 and 22 the various terms in the Reynolds-stress-balance 
equations (5.1) are plotted in local wall coordinates for both walls (velocities 
non-dimensionalized by local U, and lengths by v/ U,) .  This non-dimensionalization 
is consistent with the wall-similarity hypothesis, and attempts to eliminate the effect 
of the different Reynolds numbers on the concave and convex walls. Except for the 
streamwise convection and production (they are identical) in the 3 and UV equations, 
none of the terms due to streamwise gradients ('extra' terms) are included because 
they are negligibly small. Terms in each of the equations show remarkably little 
difference between the concave and convex sides of the channel when plotted in local 
wall coordinates. The few significant differences will be discussed after we examine 
the common features. 

The 2 equation is largely dominated by production and dissipation. There is a large 
peak in production near the wall (y' x 15), which is balanced in part by the large 
dissipation near the wall. Turbulent and viscous diffusion carry 2 energy from the 
region of maximum production (note the minima in viscous and turbulent diffusion) 
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FIGURE 20. Terms in the balance of $ in local wall coordinates: (a) concave wall, ( b )  convex 
wall. See figure. 21 for symbols. 

in both directions, away from and towards the wall. Very near the wall the large 
values of dissipation are balanced by diffusion from the maximum-production region. 
Far from the wall, production and the positive contribution of turbulent diffusion 
are balanced by dissipation and the velocity-pressure-gradient terms. In  the 2 
equation, the velocity-pressure-gradient term consists entirely of the pressure-strain 
correlation which represents transfer of energy to the other components of turbulent 
intensity (2 and 3). 

Since the 2 and 3 equations contain no significant production terms, their only 
source of energy is the pressurestrain correlation. In  figure 23, the pressure-strain 
term appearing in the u2, v2 and 2 equations are plotted together. Beyond yf of 20, 
- the major effect of the pressure-strain correlation is to distribute energy from the 
u2 component to the 3 and 3 components. However, close to the wall there is a large 
transfer from the normal component 3 to the other components. This was observed 
by Moin & Kim (1982) in their computshions of plane-channel flow and was referred 
to as the ‘splatting ’ or impingement effect. It is caused by fluid elements approaching 
the wall, impinging on it,  and transferring their energy to motions parallel to the wall. 
Because of the no-slip boundary conditions and vortex stretching, the splatting effect 
gives rise to large streamwise and spanwise vorticity fluctuations, as seen in figure 8. 

-- 



504 

0 

R. D.  Moser and P.  Moin 

........... ............... ............ ............. .......... y 
b--- a- ------ 

.... ........................... 

----- 

0.09 
(4 

t 
................. .......... ......... ..... ........ ...... ........... ........................... 

0 :A--- __------- - ------ 1 I r *  \------ 

I 

I/-\-------- 

- 0.09 F,,,,,,,, 

0.09 
(4 1 

-0.09 1 I 1 
0 10 20 30 40 50 60 70 80 90 

Y +  

FIGURE 21. Terms in the balance of 3' in local wall coordinates: (a) concave wall, (b )  convex 
wall. See figure 21 for symbols. 

I n  the 2 equation, the pressure-strain and pressure-diffusion terms combine to  
form the velocity-pressure-gradient term. In  figure 20 the velocity-pressure-gradient 
correlation is the major positive contribution to p. Note that i t  is only slightly 
negative near the wall, implying that the pressure-diffusion term is positive near the 
wall to  cancel the negative pressure-strain term. The velocity-pressure-gradient 
correlation, which is the source of 3 energy, is maximum at y+ x 35. As in the 2 
equation, energy is diffused from this location in both directions, toward and away 
from the wall, the predominant diffusive term being the turbulent diffusion. 
Kinematic constraints on the normal velocity (awl& = 0 at the walls) require that the 
viscous diffusion and viscous dissipation of 7 have zero slope a t  the wall. This is not 
apparent in figure 20; however, when the region around the origin is magnified i t  can 
be seen that these slopes are indeed zero (Moser & Moin 1984). 

Pressurestrain and viscous dissipation dominate the 2 equation. Very near the 
wall, however, there is significant viscous diffusion. 

I n  the UV equation, the production dominates, and again there is viscous and 
turbulent diffusion from the maximum source region (y+ x 15) towards and away 
from the wall. However, in this case the viscous dissipation is negligible almost 
everywhere, and the production is balanced by the velocity-pressure-gradient and 
turbulent-diffusion terms. 
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FIQURE 22. Terms in the balance of 7iV in local wall coordinates: (a) concave wall (for -7iV see 
text), (b )  convex wall. See figure 21 for symbols. 

The current Reynolds-stress balances can be compared to those obtained by Moin 
& Kim (1982). As with other statistical correlations, there is a remarkable similarity 
between the 2 and 2 balances in this study and those reported by Moin & Kim, 
though there are differences in the y+ locations of the maxima, minima and zera 
crossings of the various terms. In  general, the y+ location of each feature is larger 
in the calculations of Moin & Kim. This difference is due ta inadequacies in the 
subgrid-scale model used in the large-eddy simulations. The and Ti3 bJances appear 
quite different in the two calculations. However, in the case of 3, if we approach the 
wall from the centre of the channel, the same features are observed in both 
calculations though at different y+ locations. In addition, in the vicinity of the wall 
(y+ < 15), Moin & Kim show a relatively large magnitude of turbulent diffusion 
balanced by a large velocity-pressure-gradient term. This is not found in the present 
calculations. Note that in both calculations the location of the maximum in the 
turbulent diffusion term (y+ = 15 here and y+ = 30 in Moin & Kim) is at the same 
location as the minimum in the w-skewness factor. The w-skewness factor and 
turbulent diffusion are related because they both involve 3. 

The balance of the turbulent kinetic energy 2q2 = u2 + w2 + w2 is shown in figure 24. 
The kinetic-energy equation is dominated by the 2 term, so this balance is very 
similar to the 2 balance. As was seen above, the turbulent diffusion is positive very 

_ - -  
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FIGURE 23. Diagonal elements of the pressure-strain correlation tensor @: -, eee; ----, 
arr; ---, aZz. (a) concave side, ( b )  convex side. 

near the wall as a result of the diffusion of energy from the maximum source region. 
In contrast, the estimated balance of Townsend (1976) shows no positive region of 
turbulent diffusion. Moreover, Townsend shows a very large pressure-diffusion term 
near the wall which is also contrary (in relative magnitude) to the current results and 
to those of Moin & Kim (1982). Townsend’s estimates for the remaining terms are 
in qualitative agreement with the current calculations. 

As was noted above, the terms of the Reynolds-stress balance are remarkably 
similar on the convex and concave sides (when normalized by local wall variables). 
There are, however, several notable differences. In  the 2 equation, the production 
is somewhat higher on the concave side (about 10 %), and near the wall (yf < 25) the 
turbulent diffusion is lower. The same is true in the 2 balance. Also, in the 3 equation, 
streamwise production and convection (they are identical) make a small positive 
contribution on the concave side and a small negative contribution on the convex 
side. Note that the same terms appear with opposite sign in the 2 equation, but in 
that equation other terms are much larger. The UV balances show the most differences 
between the concave and convex sides. This is not surprising since UV itself shows 
more differences between the two sides than the turbulence intensities. On the 
concave side the peak production of -G is about 5 yo less than on the convex side, 
a result of the smaller values of aU/ar on the concave side when expressed in local 
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FIQURE 24. Terms in the balance of 2q8 = G+?+G in local wall coordinates: (a) concave 
wall, ( b )  convex wall. See figure 21 for symbols. 

wall coordinates. The velocity-pressure-gradient term is as much as 20 yo greater on 
the concave side, and the turbulent diffusion from the maximum source region is 
about 40% higher on the concave side. In this balance streamwise convection and 
production are not negligible, they contribute to -G on the concave side and 
diminish -G on the convex side. Streamwise convection and production are 
strongest near the walls (y+ z 15), where they contribute about 10 % of production, 
and slowly decrease towards the centre of the channel. 

It is interesting to consider the sign with which the streamwise gradient (‘extra ’) 
terms contribute to the Reynolds-stress budgets on the two sides of the channel. It 
was noted above that the streamwise convection terms contributed with opposite sign 
on the two sides. All the other ‘extra’ terms except the streamwise viscous diffusion 
also contribute with opposite sign on the two sides of the channel. These terms have 
not been plotted because they are negligibly small; however, their behaviour with 
respect to sign on the two sides of the channel can be deduced from the following 
argument. Assuming that the behaviour of statistical quantities on the concave and 
convex walls is similar (as has been observed), i t  can be seen that, for a particular 
term in (5.1), if the sum of the exponent on vertical velocity v in the term and the 
number of vertical (r) derivatives is even (odd for the G equation) then that term 
will contribute with the same sign on the two sides of the channel. Otherwise it will 

17 FLM 175 
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contribute with opposite sign. All normal terms necessarily contribute with the same 
sign on the two sides of the channel. Note that the streamwise viscous diffusion and 
streamwise turbulent diffusion are different in this regard; that is, streamwise 
turbulent diffusion contributes with opposite sign on the two sides while streamwise 
viscous diffusion does not. Viscous diffusion is by definition driven by Reynolds-stress 
gradients, thus the model of streamwise turbulent diffusion being driven by Reynolds- 
stress gradients is particularly inappropriate. I n  fact, unlike the normal turbulent 
diffusion, the streamwise turbulent diffusion transports Reynolds stress against the 
prevailing streamwise gradient of Reynolds stress in most of the convex side of the 
channel (y+ > 10). This observation is of little consequence for the current mild- 
curvature case, since the streamwise turbulent diffusion is negligible in all the 
Reynolds-stress balances. However, i t  is expected that in strong curvature this term 
will be important. 

Many of the differences cited above are in the turbulent-diffusion and pressure- 
strain terms. The turbulent-diffusion terms in these calculations include several 
effects : the convection of the underlying turbulence by the Taylor-Gortler vortices, 
the actual turbulent diffusion of the underlying turbulence and the enhancement (or 
diminishment) of that diffusion by the centrifugal instability mechanism. The effects 
of the Taylor-Gortler vortices and the centrifugal mechanism on the concave walls 
will be opposite to  that on the convex wall, so i t  is not surprising that the turbulent 
diffusion is different on the two walls. This is in accordance with Bradshaw’s (1973) 
assertion that curvature effects on the Reynolds-stress equations must appear in the 
higher-order statistical correlations. Bradshaw’s argument would also suggest that 
the pressure-strain terms should be affected since they can be expressed as integrals 
of two-point triple correlations of the velocity gradients (see for example Launder 
et a2. 1975). The significant curvature effects on the 753 pressure-strain terms is also 
in accordance with the suggestions of Launder et al. and So (1975) that  curvature 
effects can be accounted for by properly modelling the pressure-strain terms. 

Note that the dissipation terms, which are dominated by the small scales, are in 
very good agreement on the two walls. Also, as noted in 55.1, the r.m.8. vorticity 
fluctuations, which are sensitive to the small scales, were in good agreement in local 
wall variables. This suggests that  curvature has a minimal effect on the small scales 
of turbulence. 

6. Conclusions 
A direct numerical simulation of a low -Reynolds-number, fully developed curved 

turbulent channel flow has been performed. Simulation results exhibit remarkable 
qualitative and quantitative agreement with the experimental observations, and 
have all the features of a wall-bounded turbulent flow, including near-wall streaks 
with the experimentally observed mean spacing. 

The results of this simulation have been examined for curvature effects and their 
causes ; the following specific observations were made. 

(i) Many of the turbulence statistics of interest are the same on the concave and 
convex sides of the channel when scaled in local wall variables. 

(ii) The most significant exceptions to  the similarity of the concave and convex 
walls in local wall variables are the Reynolds shear stress and the terms of the 
equation for the Reynolds-shear-stress balance. Near-wall skewness and flatness 
factors were also affected. 

(iii) Taylor-Gortler vortices are directly responsible for approximately half of the 
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difference in Reynolds shear stress between the two sides of the channel in local wall 
variables. They are also responsible for half of the difference between the wall shear 
stresses. 

(iv) Differences in the equations for the Reynolds-shear-stress balance between 
the two walls are most prominent in the turbulent-diffusion and velocity-pressure- 
gradient terms. 

(v) In  the 2 balance equation and the equation for the Reynolds-shear-stress 
balance, streamwise (‘extra ’) production and convection are not negligible. These 
terms contribute with opposite signs on the concave and convex walls, enhancing 
differences between the two sides. 

(vi) Streamwise turbulent diffusion and streamwise viscous diffusion have quali- 
tatively different behaviour. Streamwise turbulent-diffusion transport is against the 
streamwise Reynolds-stress gradients on the convex side. This is expected to be 
important in strong curvature cases. 

These observations suggest some possible explanations for the difficulties that have 
been experienced in modelling curved flows, especially concave curved flows. First, 
the modelled computations are usually two-dimensional (streamwise and normal) 
and do not explicitly account for the presence of Taylor-Giirtler vortices which are 
shown here to have a significant impact on the turbulence statistics. Terms in the 
turbulent kinetic-energy equation (as well as many other quantities) are relatively 
insensitive to the presence of the curvature (when normalized in wall variables), so 
that a standard k-c model is not likely to produce significant curvature effects. The 
important differences in the shear-stress equation due to curvature appear in terms 
which must be modelled in a Reynolds-stress formulation. In  cases of strong 
curvature the streamwise turbulent-diffusion term is expected to be important ; 
however, this term is inconsistent with gradient-diffusion models. 

This work is based in part on the doctoral dissertation of R. D. Moser at Stanford 
University. The authors gratefully acknowledge useful discussions with Professors 
A. Leonard, W. C. Reynolds and J. H. Ferziger. Dr J. Kim made numerous helpful 
comments on a draft of this paper. 
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